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The prediction of inelastic behavior of metallic materials at

elevated temperatures has increased in importance in recent years

The operating conditions within the hot section of a rocket motor

or a modern gas turbine engine present an extremely harsh thermo-

mechanical environment. Large thermal transients are induced each

time the engine is started or shut down. Additional thermal tran-

sient from an elevated ambient, occur whenever the engine power

level is adjusted to meet flight requirements. The structural

elements employed to construct such hot sections, as well as any

engine components located therein, must be capable of withstand-

ing such extreme conditions. Failure of a component would, due to

the critical nature of the hot section, lead to an immediate and

catastrophic loss in power and thus cannot be tolerated. Conse-

quently, assuring satisfactory 10ng term performance for such

components is a major concern for the designer.

Traditionally, this requirement for long term durability has

been a more significant concern for gas turbine engines than for

rocket motors. However, with the advent of reusable space vehi-

cles, such as the Space Shuttle, the requirement to accurately

predict future performance, following repeated elevated tempera-

ture operation, must now be extended to include the more extreme

rocket motor application.

A mathematical model and solution methodologies for analyzing

structural response of thin, metallic shell-type structures under

large transient, cyclic or static thermomechanical loads have

been developed. Among the system responses, which are associated

with these load conditions, are thermal buckling and creep buck-

ling. Thus, geometric as well as material-type nonlinearities (of

high order) can be anticipated and have been considered in the

development of the mathematical model. Furthermore, this was

accommodated in the solution procedures.

A complete true ab-inito rate theory of kinematics and kine-

tics for continuum and curved thin structures, without any res-

triction on the magnitude of the strains or the deformation, was

formulated. The time dependence and large strain behavior are

incorporated through the introduction of th_ time rates of the
metric and curvature in two coordinate systems; a fixed (spatial)

one and a convected (material) coordinate system. The relations

between the time derivative and the covariant derivatives (gra-
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dients) have been developed for curved space and motion, so that

the velocity components supply the connection between the equa-

tions of motion and the time rate of change of the metric and

curvature tenors.

The metric tensor (time rate of change) in the convected ma-

terial coordinate system is linearly decomposed into elastic and

plastic parts. In this formulation, a yield function is assumed,

which is dependent on the rate of change of stress, metric, tem-

perature, and a set of internal variables. Moreover, a hypoelas-

tic law was chosen to describe the thermoelastic part of the de-

formation.

A time and temperature dependent viscoplastic model was for-

mulated in this convected material system to account for finite

strains and rotations. The history and temperature dependence

were incorporated through the introduction of internal variables.

The choice of these variables, as well as their evolution, was

motivated by phenomenological thermodynamic considerations. The

nonisothermal.elastic-viscoplastic deformation process was des-

cribed completely by "thermodynamic state '' equations.

The procedure employed permits the rates of the field for-

mulation to be interpreted as increments in the numerical solu-

tion. This is particulary convenient for the construction of a

finite element models together with incremental boundary condi-

tion histories. Finite element formulation was developed for cur-

ved beams and shells. The element matrixes were derived directly

from the incrementally formulated equations using tensor oriented

procedure.

Finite element solution of any boundary-value problem invol-

ves the solution of the equilibrium equation ' (global) together

with the constitutive equation (local). Both equations are solved

simultaneously in a step by step manner. The incremental form of

the global and the local equation can be achieved by taking the

integration over the incremental time step _t=tj+l-t j . The rec-

tangular rule has been applied to execute the re_ultihg time in-

tegration.

For structures with unstable deformation paths (snap-buckling

phenomenon), accurate and efficient description of the motion of

the structure was obtained by inclusion of the inertia forces.

Applications: The response of a clamped circular arch and of

a cylindrical panel were studied. The shallow circular clamped

arch subjected to a single central concentrated load, as shown in

Fig. I, was analyzed. The material chosen for the numerical expe-

rimentation is the carbon steel C-45 (DIN 1720) with E = 107 psi,

9= 0.3 and 6y = 2.7.104 psi at room temperature.
The arch response, the deflection time history and the influ-

ence of temperature on the arch response are shown in Figs. 2,3

and 4, respectively.

A thin cylindrical shell panel simply supported on all sides,

made of the same material as the arch, and subjected to in-plane

loads along the generators as shown in Fig. 5 was also studied.

The deflection time history of the panel is shown in Fig 6,

for a value of N_= 20 ibs/in. This load is well below the criti-

cal (buckling) load for the geometry which is 42.15 ibs/in.
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FIG. I CLAMPED CIRCULAR ARCH
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FIG. 5 CYLINDRICAL PANEL
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